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Abstract 

Polytypes have been simulated, treating them as 
analogues of a one-dimensional spin-half Ising chain 
with competing short-range and infinite-range inter- 
actions. Short-range interactions are treated as random 
variables to approximate conditions of growth from 
melt as well as from vapour. Besides ordered polytypes 
up to 12R, short stretches of long-period polytypes (up 
to 33R) have been observed. Such long-period 
sequences could be of significance in the context of 
Frank's theory of polytypism. The form of short-range 
interactions employed in the study has been justified 
by carrying out model potential calculations. 

I. Introduction 

In an earlier paper (Ramasesha & Rao, 1977, referred 
to as R & R from here or.), we discussed our attempts at 
computer simulation of polytypes treating them as 
analogues of a one-dimensional spin-half Ising chain 
with competing short- and infinite-range interactions. 
The growth conditions simulated were akin to the 
conditions of growth of polytypes from melt, but the 
interaction parameters were considered as constant 
during any given simulation. However, during the 
growth of a polytype (whether it be from melt or 
vapour), it is reasonable to assume that the atoms in the 
layers are jostling about leading to fluctuations in 
interlayer interaction strength. A proper simulation of 
polytypes should take into account such fluctuations. 

* Communication No. 55 from the Solid State and Structural 
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This becomes possible if we treat the interaction 
parameters in the simulation as random variables 
(varying with time) during any given simulation. We 
have, therefore, carried out a computer simulation of 
polytype growth from vapour employing both constant 
and fluctuating short-range interaction parameters. 
Finally, we have carried out model potential cal- 
culations aimed at justifying the form of short-range 
interaction parameters employed in the present study. 

II. Model employed 

Since any layer in a close-packed structure can either 
be in a hexagonal (h) or a cubic (k) configuration, each 
layer can be represented by any of the two spin states 
of an Ising spin with S = ½. In this representation, a 
polytype corresponds to an ordered (equilibrium or 
metastablet state of a chain of such spins. To obtain 
such an ordered state, it is necessary to invoke 
infinite-range interactions between the spins, the system 
of interest being essentially one-dimensional. As al- 
ready discussed by R & R, such an interaction term 
can arise due to elastic interactions between the layers. 
This interaction favours a completely cubic or a 
completely hexagonal close-packed arrangement. In 
spin terminology, this is equivalent to the two possible 
states of magnetization of a ferromagnetic Ising chain. 
The elastic interaction, being infinite ranged, would in 

5" It is not possible to say definitely whether a given polytypic 
form is an equilibrium or a metastable phase under given 
temperature and pressure conditions because many polytypic forms 
exist with no discernible differences in stability at ordinary 
temperatures and pressures. 
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this terminology imply an equivalent-neighbour ferro- 
magnetic interaction. To obtain a wide variety of 
equilibrium or metastable spin arrangements of the 
chain (corresponding to different stable polytypic 
forms), it is necessary that a short-range interaction 
term, which opposes the infinite-range interaction term, 
be introduced. Such an Ising chain with nearest- 
neighbour and next-nearest-neighbour antiferro- 
magnetic interactions and infinite-range ferromagnetic 
interactions has already been studied by Theumann & 
Hoye (1971). Monte Carlo simulation studies of this 
Ising chain (Ramasesha, 1978) showed that the 
properties of the Ising chain are akin to those of 
polytypes. Simulation studies of polytypes by R & R 
were, therefore, based on the Theumann-Hoye Hamil- 
tonian. The same basic Hamiltonian is employed in the 
present study and is given by 

H = - - J Z  S[ S [ + , - K Z  S~ S[+ 2 - L  Z S[S~  
i i i , j  

--  Hext Z S[ ,  
i 

(1) 

where S z can take the values +½, J, K, L are the 
interaction parameters and H ext is the applied field, 
which in polytype terminology is responsible for a 
difference in the energy between isolated layers in h and 
k configurations. The results of R & R are summarized 
in Table 1. 

Table 1. Results of  polytype simulation from melt with 
fixed short-range interactions (from R & R) 

Polytype formed 
Interaction* (layer sequence in 

strengths ABC notation in 
No. J K parentheses) 

1 6-0 6.0 3C (ABC) or 
2H (AB) 
exclusively 

2 6-0 12.0 12R Two higher-order 
(BABA CBCBACAC) transitions 

3 12.5 12.5 Syntactic coalescence Four higher-order 
of 12R and 6H transitions 
(BACBCA) 

4 15.0 9.0 Syntactic coalescence Three higher-order 
of 6H and 9R transitions 
(ABCBCA CAB) 

5 18.0 7.0 Syntactic coalescence Four higher-order 
of 6H and 9R wi th  transitions 
considerable stacking 
faults 

6 15.0 3-0 4H (ABAC) with Two higher-order 
stacking faults transitions 

* H ext : 0 and L = 30/1000 in all the simulations. The para- 
meters are in arbitrary units with growth temperature fixed at 5. 

Expected thermo- 
dynamic behaviour 
(Ramasesha, 1978) 

One first-order 
transition 

III. Simulation procedure 
In the simulation of polytypes from melt with random 
short-range interactions, a random configuration of 
1000 layers is stored in the computer. Any one of the 
1000 layers is picked at random by use of a random 
integer between 1 and 1000; a general double-layer 
mechanism discussed by R & R  is used for the 
rearrangement of this layer and one of its neighbours. 
The change in energy, AE, for this rearrangement 
process has to be calculated at this stage. Since the 
interaction strengths J and K are assumed to be 
random variables, to calculate AE for the rearrange- 
ment process we have to provide the value of J and K 
to be used at each step. This is done as follows. We 
assume that J and K are distributed according to a 
Gaussian with means J0 and K 0 and standard 
deviations aj and e K respectively. The probabilities that 
the interaction parameters chosen for the process are ,in 
and K~ are then given by 

1 
P(Jn) - as V/2n exp - 2a 2 ] ,  (2a) 

1 [ (K.-- K0) z ] 
P(Kn) -- aK V/2z ~ exp 2o .2 . (2b) 

We also assume that the interaction parameters take 
discrete values and limit their number to eleven lying 
uniformly in the interval Jo +- 3as and K o _+ 30 K. This 
interval encloses ~ 99 % of the area under the Gaussian. 
The probability that a given discrete value, say J , ,  is 
taken up for a rearrangement step is given by 

Jn 

~O(Jn) oc f P(J) dJ. (3) 
Jn-! 

To make the actual selection, the interval (0,1) is 
subdivided into eleven subintervals each of length 
proportional to t,0(Jn). A random number between 0 
and 1 is called and the interaction parameter Jn is 
picked for the process if this random number lies in the 
nth subinterval. Similarly, K,, for the process is picked 
with the help of another random number. The values of 
J0 and K 0 as well as the standard deviations used for 
each simulation are given in Table 2. The choice of J0 
and K 0 were on the basis of the Theumann-Hoye 
Ising-chain studies of Ramasesha (1978). The standard 
deviations were usually taken to be one quarter of the 
mean values. After selecting the values of J,, and K,,, 
AE for the process is calculated from (1) with a cyclic 
boundary condition. If AE is negative, the rearrange- 
ment is affected and if AE is positive, the rearrange- 
ment is affected with a probability exp ( -AE/T) ,  where 
T is the temperature of growth. Generally, about 150 
rearrangements/layer are carried out and the order in 
the resulting layer configuration is deciphered with a 
display program described by R & R. 
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Crystal growth from vapour involves the formation 
of a substrate or seed over which there is subsequent 
condensation or evaporation of layers. For growth to 
occur, the probability of condensation must be greater 
than the probability of evaporation. This probability as 
well as the temperature of crystallization is usually 
critical if the crystallization is to occur without the 
introduction of too many stacking faults. Under 
favourable conditions of growth, the seed propagates to 
give a macroscopic crystal. 

The computer simulation of this process involves 
specifying the initial length and type (i.e. the con- 
figuration of layers) of the seed, the temperature, T, of 
crystallization and the interaction parameters. The 
interaction parameters employed were the same as 
those in Table 1. The probability of condensation was 
fixed at 0.6 and that of evaporation at 0.4 after trial 
and error. At the beginning of each step, the type of 
process, i.e. whether the process is one of evaporation 
or condensation, is ascertained with the help of a 
random number. If the process is one of evaporation, 
the energy change, AE, for the process of removing the 
outermost layer is calculated from (1) employing free 
boundary conditions. If AE is negative, the outermost 
layer is removed. If AE is positive, the outermost layer 
is removed with a probability exp(-AE/T) .  If the 
process happens to be condensation, a layer (A, B or 
C) is chosen at random and the energy change, AE, for 
condensing this layer on the seed is calculated. If AE is 
negative, the layer is condensed onto the seed with a 
probability exp(--AE/T). The whole process of 
evaporation and condensation is continued until the 
seed propagates to 1000 layers. The order in the 
resultant polytype is deciphered once again with the 
display program. 

To approximate the growth conditions of polytypes 
from vapour, we need to use short-range interaction 
parameters which are random variables. These random 
variables are distributed according to the distribution 
parameters given in Table 2. In this case, the simulation 
procedure is exactly the same as above except that at 
each step (of condensation or evaporation), the 

Table 2. Distribution parameters for random short- 
range interactions employed in growth from melt and 

vapour 

T h e  inf in i te - range  i n t e r ac t i on  p a r a m e t e r  was  f ixed at  L = 3 0 / 1 0 0 0  
and  H ext = 0. 

No. J0 J K0 K 

1 6.0 1.5 12.0 3.0 
2 12.5 3.125 12.5 3.125 
3 15.0 3.75 9.0 2.25 
4 18.0 4.5 7.0 1.75 
5 10.0 2.5 12.0 3.0 
6 16.5 4.125 6.0 1.5 
7 14.0 3.5 3.0 0.75 

interaction parameters are chosen randomly as 
described in the growth from the melt. The results of 
these simulations are presented in the next section. 

IV. Resul ts  and d i scuss ion  

The results of growth from the melt with random 
short-range interactions are presented in Table 3. We 
find, by comparison with Table 1, that the results of 
growth from the melt with and without randomness in 
short-range interactions are similar. In both cases, given 
that J0 and K 0 are the same as J and K (of Table 1), the 
same polytypic ordering is observed. The longest 
polytypic ordering observed was 12R, although with 
varying degrees of stacking faults with or without 
randomness in short-range interactions. However, the 
two cases differ in one important respect. The poly- 
types grown with random short-range interactions 
show fairly long stretches of longer period polytypes 
like 14H and 15R, which were absent in a simple 
growth from melt simulation. Although these perio- 
dicities do not repeat a sufficiently large number of 
times to be considered as polytypes, they could be of 
significance in the context of Frank 's  model of 
polytypism. 

One of the objections to Frank 's  theory has been 
that the formation of an initial pitch corresponding to a 
polytype is energetically possible only after the crystal 
has grown to a sufficient extent. Usually, by the time 
the crystal has grown to this extent, it is reasonable to 
expect that the crystal has already adopted a definite 
polytypic form. The mechanism of formation of this 
initial pitch or ledge is not explained in the theory. We 
believe that the longer periodicities repeating over only 
a few unit cells found in our simulation could indeed 

Table 3. Results of  the growth of polytypes from melt 
with random short-range interactions 

No.* Description of the observed polytyptic ordering 

1 Predominantly 12R, short stretches of 6H and a fairly long 
stretch of 14H (ABCA CABCBA CA CB) 

2 An interlacingt of 6 H and 12R polytypes 
3 Predominantly 6H, short stretches of 8H (ABACBABC), 

12R, 15R (ABACABCBABCACBC) and 16H 
(ACBCABACABCBACAB) 

4 4H polytype. Can also be viewed as a 6H with large 
stacking faults. A repeat sequence corresponding to 15 R 
is also observed 

5 Syntactic coalescence of 6H and 12R polytypes 
6 Same as in no. 4 
7 Same as in nos. 4 and 6 

* The interaction parameters correspond to the values specified 
against the same serial number in Table 2. 

t This is distinct from syntactic coalescence in the sense that 
these orderings alternate almost from unit cell to unit cell. 
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correspond to the initial pitch in Frank 's  theory. This 
pitch can then propagate as proposed by Frank to give 
rise to the polytype. Since the formation of the initial 
ledge of long lJ~riods is due to random short-range 
interactions and since the random short-range inter- 

Table 4. Results of polytype growth from vapour with 
fixed short-range interactions 

Seed Seed 
No.* type length 

1 2H 3 layers 
8 layers 

3C 3 layers 
9 layers 

12R 12 layers 
2 12R 12 layers 
3 6H 6 layers 

20 layers 

4 6H 20 layers) 
6 layers[ 

9R 20 layers) 
9 layers 

5 4H 4 layers 
9R 9 layers 

6 4H 4 layers 
9R 9 layers 

Description of the resulting polytypic 
ordering 

A mixture of 6H and 12R polytypes 
Predominantly 6 H polytype 
No descernible polytypic ordering 
A mixture of9R and 12R polytypic 

ordering 
Predominantly 6 H polytypic ordering 
12R polytype 
A mixture of 6H and 12R polytypic 

ordering 
A mixture of6H, 12R and 9R polytypic 

ordering 

4H polytype with very few stacking faults 

Predominantly 4H with an admixture of 
6 H polytype 

4 H polytype 
4H polytype 
4H polytype 
4H polytype 

* Interaction parameters correspond to the values specified 
against the same serial number in Table 1. 

actions are attributed to the growth conditions, we 
notice that the specific polytype formed depends upon 
the conditions of growth. 

In Table 4, our results on the growth of polytypes 
from vapour with fixed short-range interactions are 
shown. When fixed short-range interactions are em- 
ployed, the lowest periodicity observed is 4 H  in 
contrast to 2 H  and 3C observed i~ the growth from 
melt. This can be readily explained since short-range 
interactions are more dominant  in the growth of 
polytypes from vapour than in the growth from melt. It 
appears that short-range interactions usually deter- 
mine the nature of ordering and infinite-range inter- 
actions help in propagating this order over macro- 
scopic distances. 

Another interesting feature of polytype growth from 
vapour with fixed short-range interactions is that the 
polytype formed depends more strongly on interaction 
strengths than on seed type. That is the interaction 
strength governs the polytype formed and not the 
ordering of the layers in the seed, although larger seed 
sizes always result in polytypes with fewer stacking 
faults. The display of a I2R polytype grown from 
vapour is shown in Fig. 1. 

The introduction of randomness in short-range 
interactions in the growth of polytypes from vapour has 
similar effects on the polytype formed, as in the case of 
growth from melt. Short stretches of fairly long ordered 
polytypes such as 14H and 33R were observed (Fig. 
2). These short stretches could once again be important 
in the context of Frank 's  theory. 
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Fig. 1. Display of the 12R polytypes formed with a 12-layer 12R seed. Interaction strengths are given by no. 2 in Table 1. 
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V. Origin of short-range interactions 

In the Hamiltonian (1) used in the simulation of 
polytypes, w ,~ could qualitatively justify the infinite- 
range interaction term on the basis of elastic inter- 
actions (Ramasesha & Rao 1977; Kittel, 1978). 
However, there was no a priori justification for the 
form of the short-range interaction terms. With a view 
to justifying the form of short-range interactions in (1), 
we have attempted a few simple calculations of lattice 
sums with standard potentials. 

The problem of specifying potentials for the layers in 
a polytype is not simple. The nature of bonding in these 
compounds is varied and there is no straightforward 
way of denoting these potentials. However, as a 
reasonable first guess, the following forms of potentials 
have been tried. 

(i) Lennard-Jones 6-12  potential, 

(o(r) = - - A / r  6 + B/r  12, 

where A and B are constants. 
(ii) Kitaigorodski 6: exp potential, 

(4) 

~o(r )=-A / r  6 + B exp(--r/p), (5) 

where A, B and p are constants. The parameters in the 
Lennard-Jones potential were fixed by assuming that 
the interaction between two neighbouring layers should 
be attractive with a bond energy of 104.6 kJ/mol. This 
assumption, coupled with the stability condition 

cgrp(r)] 

Or ]r=ro = 0, (6) 

gave unique values of A and B for a given r o. In the 
Kitaigorodski potential, a reasonable value of p was 
assumed and the B parameter corresponding to the 
C - C  bond was used (Kitaigorodski, 1973). The 
parameter A was then evaluated with a reasonable 
bond distance and a bond energy of 104.6 kJ/mol. 

The method employed in these calculations involves 
the generation of a lattice of several layers in any 
desired configuration (e.g. A B C B A C  is a six-layer 
lattice with a definite configuration) on a computer. 
Each layer consists of 20 × 20 lattice points. In order 
to calculate the energy of these configurations by 
simple lattice summations, a lattice site is located 
approximately in the middle of a layer and its 
interactions with all the neighbouring sites lying 
on other layers is computed.* The series is cut off at a 
suitable distance to carry out the actual summations. 
The energies for stackings of layers in different 
configurations are fitted to (1) to obtain the parameters 
Jr, K and H ext. For this purpose, energies of  all the 
different stacking sequences of seven layers are 
considered. The total number of distinct configuratons 
in a seven-layer stacking is nineteen and is therefore 

* Interactions within the layer are neglected because we are 
interested in the energy differences between different layer stack- 
ings. The intralayer interactions are constant and would not 
contribute to these differences. 
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Fig. 2. Stretches of 33R polytype formed with a 20-layer 9R seed. Interaction strengths correspond to no. 4 in Table 2. A typical 33R 
sequence has been underlined. The order is deciphered in the hk sequence of the polytype and corresponds to hhkkhhkkhhk. 
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large enough to give a meaningful fit of the data. The 
best-fit parameters J, K and H ext give the least variance 
when the energies of the different seven-layer con- 
figurations are fitted to the expression 

Econf = / t  + Jp + Kq + n ext r, (6) 

where Econf is the energy of the configuration, A, a 
constant, p is the difference between the number of like 
nearest neighbours and unlike nearest neighbours in the 
configuration, q is a similar difference for the next- 
nearest neighbours and r is the number of layers in h 
configuration minus the number of layers in k con- 
figuration. 

Table 5. Configuration energies o f  non-degenerate 
seven-layer sequences 

Energy for different model 
potentials (in kJ/mol) 

ABC hk 
No. notation notation 6 : exp* 6-121- 

1 ABABABA hhhhh -295.6831 -929.4971 
2 ABCBCBC khhhh -295.5546 -928.9952 
3 ABACACA hkhhh -295.6049 -929.1501 
4 ABABCBC hhkhh -295.5396 -928.9479 
5 ABCACAC kkhhh -295.5278 -928.8089 
6 ABCBABA khkhh -295.5412 -928.8504 
7 ABCBABC khhkh -295.4889 -928.6880 
8 ABCBCBA khhhk -295.5261 -928.8034 
9 ABACBCB hkkhh -295.5128 -928.7616 

I0 ABACABA hkhkh -295.5567 -928.8977 
11 ABACBAC hkhhk -295.4638 -928.4037 
12 ABCBACB khkkk -295.4403 -928.3301 
13 ABCACBA kkhkk -295.4776 -928.4456 
14 ABABCAB hhkhh -295.5010 -928.6222 
15 ABACABC hkhkk -295.4667 -928.5163 
16 ABACBCA hkkhk -295.5019 -928.6243 
17 ABCBCAB khhkk -295.4621 -928-5017 
18 ABCABCA khkhk -295.4432 -928.4427 
19 ABCABCA kkkkk -295.4768 -928.3405 

* The energies in this column are computed with 
p=0.33. 

t The energies in this column are computed with 

r o = 2-5/t, and 

ro= 2.5 A. 

Table 6. Best - f t  parameters A, H ext, J and K for  the 
two potentials with variance f o r  the f i t  

Poten- 
No. tial A n ext J K Variance 

1 6 :exp -295.4396 -0.0049 -0.0054 +0.0070 2.66 
2 6 - 1 2  -928.4845 -0.0273 -0.0166 -0.0217 26.26 

The energies of the configurations as well as the 
values of A, J, K and H ext and the variance are given in 
Tables 5 and 6. Two relevant observations can be made 
from Table 5. Firstly, differences in energies of different 
configurations are rather small, which is consistent with 
the similar thermodynamic stabilities of different 
polytypic forms as well as the number of such forms 
existing under identical conditions. Secondly, the 
variation of energy from configuration to configuration 
depends upon the choice of potential emphasizing the 
need for a suitable potential to describe interlayer 
interactions in polytypic substances. While the actual 
values of parameters in Table 6 may not correspond to 
real systems, their relative magnitudes and signs are the 
same for both potentials. We notice, from the negative 
sign of next, that usually a layer in the hexagonal 
configuration is more stable than a layer in the cubic 
configuration. This is reasonable since in the h 
configuration the interatomic distances between atoms 
in the layers immediately below and above the layer are 
smaller than those corresponding to the k con- 
figuration. The nearest-neighbour interaction between 
layers is antiferromagnetic, i.e. favouring a hk con- 
figuration to either hh or kk  configuration. The 
next-nearest-neighbour interaction is, however, ferro- 
magnetic favouring a like next-nearest neighbour. It 
appears from these calculations and from the earlier 
argument of R & R justifying infinite-range inter- 
actions that the basic Hamiltonian (1) is suitable for 
describing interlayer interactions in a polytype. 
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